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The ar t ic le  desc r ibes  an approximate  method for  de termining the ave rage  h e a t - t r a n s f e r  co-  
efficient on a su r face  u p s t r e a m  f r o m  a bui l t - in  a - c a l o r i m e t e r ,  on the bas i s  of t e m p e r a t u r e  
m e a s u r e m e n t s  on the wall ,  as well  as m e a s u r e m e n t s  of the local  h e a t - t r a n s f e r  coefficient  
and the local  flow veloci ty  at the point of instal lat ion of the a - c a l o r i m e t e r .  

Under industr ial  condit ions,  the m e a s u r e m e n t  of h e a t - t r a n s f e r  coefficients by c a l o r i m e t r y  of the en-  
t i r e  h e a t - t r a n s f e r r i n g  or hea t - r ece i v i ng  sur face  being invest igated usual ly  involves a grea t  deal of difficulty. 
The t e s t s  may  be cons iderably  s impl i f ied by using bui l t - in  a - c a l o r i m e t e r s .  Depending on the design of the 
(~ -ca lo r ime te r ,  the h e a t - t r a n s f e r  coefficient is de te rmined  e i ther  by measur ing  the local heat flux [1-4] or  
indirect ly  f r o m  the nonsta t ionary  t e m p e r a t u r e  field of the main body of the c a l o r i m e t e r  [5, 6]. The hea t -  
t r a n s f e r  coefficient  m e a s u r e d  by means of a the rma l  probe  c h a r a c t e r i z e s  the intensi ty of heat exchange on 
the sur face  of the c a l o r i m e t e r  i tself  [7]. This r a i s e s  the question of the method to be used for  the t r a n s f o r -  
mat ion f r o m  the m e a s u r e d  h e a t - t r a n s f e r  coefficients  to the actual  values  of the h e a t - t r a n s f e r  coefficients  
on the su r face  being invest igated.  

Let  us f i r s t  consider  the case  of a turbulent boundary l ayer  flowing pas t  a flat  p la te .  

According to the approx imate  solution of [8], for  an a r b i t r a r y  law of va r ia t ion  of the veloci ty  U 0 = U0(x ) 
of the external  flow and a t e m p e r a t u r e  head @ = | the local h e a t - t r a n s f e r  coefficient  is given by the r e l a -  
t ion 

N u z =  0"029RezPr~176 , Nuz=  az--!x, l~e t = U~ (1) 

Uo O1.25dx 

The solution (1) is based  on the assumpt ion  that the law governing the heat  exchange,  in the f o r m  of a r e l a -  
t ionship between c~ l and the number  R e ( *  = U06t**/p is conserva t ive  with r e spec t  to the gradients  of the 
veloci ty  and the t e m p e r a t u r e  head.  For  va r i ab le  U 0 and increas ing  0 ,  fo rmula  (1) has been exper imenta l ly  
conf i rmed many t imes .  

The ave rage  h e a t - t r a n s f e r  coefficient  is equal, by definition, to 

.i c~ z Odx 
0 cz (2) 

x 

.! Odx 
0 

Substituting into (2) the express ion  for  oz l obtained f r o m  (1), we find 

U00,.25dx 
X ~q 

Nu = 0.036 Pr ~ (3) 
x 

S Odx 
0 
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We assume that the measurements  of the hea t - t r ans fe r  coefficients are  made under isothermal  con- 
ditions and that consequently | = 0 everywhere except on the surface of the ca lor imete r .  If we denote by 
x 0 and x 1 the coordinates of the leading and trail ing edges of the ca lor imeter ,  then the distribution of the 
tempera ture  head along the surface past  which the flow takes place can be given in the following form: | 
= 0 for 0 -< x < x 0 and O = O 0 for x 0 <- x -< x 1. Substituting 0 into (1) and (3) and setting O 0 = const, we ob- 
tain for a flat plate (U 0 = const).~ 

Nuz : 0,029 Re~ ~ Pr ~ ( x / 0,2 , ( 4 )  
\ X - - X o  ] 

Nu = 0.036 Re ~ Pr TM ( x~ / 0,2 , x o ~ x ~ x r  (5) 
\ xl - -  xo / 

The corresponding values of local and average hea t - t r ans fe r  coefficients will be measured  by the c~-calori- 
mete r .  Formulas  (4) and (5) would seem to indicate that the measured  hea t - t r ans fe r  coefficient depends on 
the position of the ca lor imeter  with respec t  to the leading edge of the plate. However, we can easi ly con-  
vince ourselves  that the coordinates x and x 1 can be eliminated f rom Eqs.  (4) and (5). After some s impl i f ica-  
tion, we obtain: 

Nu~ = 0.029(Re~) ~ Pr ~ , Nu~ -- % ( x - - x ~  Re~ = v ~ 1 7 6  " 

Nu o = 0,036(Reo) ~ pr ~ , Nu ~  ~z(xx--Xo) , Re ~ Uo(x~--xo)  

F r o m  this it can be seen that i r respect ive  of the actual distance f rom the leading edge of the plate, the c~- 
ca lor imeter  will measure  the same hea t - t r ans fe r  coefficient value as if its leading edge coincided with the 
leading edge of the plate (we assume uniform flow in the boundary layer) .  In other words ,  a more or less  
substantial  change in the hydrodynamic boundary layer  does not affect the heat exchange. This fact,  con- 
f i rmed experimental ly for  a plate [9, 10] and a channel [5, 6] with unheated initial segments ,  is the resul t  
of pronounced changes that take place in the boundary layer  when heat exchange occurs  and far  outweigh 
any pr io r  prepara t ion of its s t ruc ture .  

Thus, for isothermal  conditions of heat t ransfer  and constant flow velocity, it is a fa i r ly  simple mat ter  
to determine the true values of the hea t - t r ans fe r  coefficient f rom the measured  values.  

Now let us consider the case in which the ca lo r imete r  is preceded by a hea t - t r ans fe r  surface with an 
a rb i t r a ry  distribution of temperature  head and velocity.  Experimental  conditions of this kind occu r ,  for 
example, in the investigation of heat t ransfer  in various cavit ies of s team turbines:  in spaces between cy l -  
inders,  in chambers  with unregulated s team bleeding, etc. 

We shall assume that only the temperature  distribution is measured  along the entire hea t - t r ans fe r r ing  
surface but that at the c ross  section at which the c~-calorimeter is installed we also make measurements  of 
the local velocity (a Pitot tube is built into the ca lor imeter ) .  
the integral 

Xo 

v Nu z 
0 

F r o m  the measurement  data we can calculate 

x o 

xo 

(6) 

The expression (6) is obtained f rom (1) ff the integral in (1) is represented as the sum of the respect ive in- 
tegrals  for  the segment 0 -< x -< x 0 before the ca lor imeter ,  where the distribution of the velocity U 0 is un-  
known, and the segment f rom the leading edge of the ca lor imeter  to the c ross  section x ~ at which the local 
hea t - t r ans fe r  coefficient is being determined (if the ca lo r imete r  measures  the average hea t - t r ans fe r  coef-  
ficient, then, in view of its small  dimensions,  the average value of a can be considered identical with its 
local value at the c ross  section x ~ = 0.5 (x 0 + xi) ). 

By substituting the integral (6) into (3), we can determine the average hea t - t r ans fe r  coefficient for 
the segment before the ca lo r imete r  by using only the tempera ture  measurements  on the surface past  which 
the flow takes place.  

Physical ly ,  the essence of the proposed method for determining the average hea t - t r ans fe r  coefficients 
f rom their local values as measured  by a ca lor imeter  lies in the fact that an c~-ealorimeter situated down- 
s t r eam with respect  to the surface being investigated is conditioned by the pr ior  hydrodynamic and thermal  
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F ig .  1~ G r a p h s  of the funct ions  II, II b L (curves  1, 2, 3, r e s p e c t i v e l y ) .  

F i g . 2 .  C o m p a r i s o n  of e x p e r i m e n t a l  da ta  with t h e o r e t i c a l  r e l a t i ons :  1) 
N u / a c c o r d i n g  to (16); 2) Nu a c c o r d i n g  to (15); 3) Nu a c c o r d i n g  to (15) 
and (12); a) e x p e r i m e n t a l  va lue s  of the loca l  Nusse l t  n u m b e r s  Nu/; b) 
Nu. 

history of the flow. If there is no heat transfer on the surface upstream from the a-calorimeter, i.e., if 
O = 0, and in addition U 0 = U0(x), then it is impossible to determine the heat-transfer coefficient on this 

surface by using an c~-calorimeter. 

It is natural to assume that the heat-transfer intensity measured by the ealoroimeter will not be greatly 
affected by any previous thermal perturbation of the flow. Quantitatively, this is manifested in the fact that 
the relative error in the determination of the average heat-transfer coefficient according to formulas (6) 
and (3) will be approximately 4-5 times the relative error in the measurement of the local heat-transfer 
coefficient by the built-in c~-calorimeter. For this reason, the experimental data should not be processed 
on the basis of individual values of Nu/; instead, the o~-calorimeter measurement data should first be aver- 

n 
aged in the form of an equation Nu/= cRe/, and then this relation should be "mapped ~ into a relation for 

the average Nusselt number Nu by making use of Eqs. (6) and (3). 

It is obvious that the proposed method of determining the average heat transfer can be applied not 
only to a plate but also to other systems. The relation corresponding to Eq. (6) for the case of a plate and 
connecting the characteristics of the prior hydrodynamic and thermal history of the flow with the heat trans- 
fer at the ce-ealorimeter will be different for different cases. We shall describe below an experimental 
method for verifying the above procedure on a test apparatus designed for investigating heat transfer in 
the case of a freely rotating disk. 

The measuring part of the apparatus consisted of a fiberglass laminate disk 600 mm in diameter, 
to the web of which, starting from a 200 mm diameter hub, annular electrical heaters made of foil 0oi mm 
thick were attached. Each foil ring was 18 mm wide. The annular heaters were separated by spaces 2 mm 
wide and covered with epoxy resin. The heating rings of equal radius on the top and bottom of the disk were 
connected to each other in series, and the power of each pair of rings was independently regulated. The 
temperature of the foil was measured by means of 25 Chromel-Copel thermocouples, 5 of which were dupli- 
cates. 

Relations analogous to (i) and (3) for a freely rotating disk with a hub can be obtained by generalizing 
K a r m a n ' s  so lu t ion  fo r  a d isk  with f low p a s t  it s t a r t i n g  f r o m  its c e n t e r .  In [11] K a r m a n  t r i ed  to find an e x -  
p r e s s i o n  of the f o r m  6 = cons t  r ~/5 fo r  the th ickness  of the tu rbu len t  b o u n d a r y  l a y e r  on the d i sk .  If we take 
6 = r 0 y ( ~ ) { ~ / w r 2 ) l / S a n d r e t a i n f r a c t i o n a l - p o w e r  p r o f i l e s  such as those  in [11] f o r  the r ad ia l  and tangent ia l  
c o m p o n e n t s  of the ve loc i ty ,  then in the c a s e  of a d isk  in a f low that  beg ins  at  an i n t e r m e d i a t e  r ad iu s  r 0 
the in t eg ra l  r e l a t i o n s  fo r  the bounda ry  l a y e r  y ie ld  the s y s t e m  of equat ions  

dq5 _ 3.6 q) +0.3306 [ ( 1 +  ~)e]~/4 
d~ 1 - } - ~  L (P J (1 -F e~) a/8 , (7) 

& _ ~ + 0.1343 0.4393 (1 -}- ~)114 (1 -~- e~)a/a (8) 
d~ 1 -~ ~ e(1 ~- ~) 
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where  ,~(~ = e(})y(~); ~ = ( r - r 0 ) / r 0 .  The tangent ia l  f r i c t iona l  s t r e s s  can be e x p r e s s e d ,  in t e r m s  of the func -  
t ions  we have in t roduced ,  by the f o r m u l a :  

xq~ = 0.0225 T o(x) T o ( x ) = = ( l + e 2 )  a/8 - -  
P ((~ ~ Re~ '2 ' 

r 

F o 

Accord ing ly ,  o n t h e b a s i s  of  Reyno ld ' s  anology [12], the Nusse l t  number  fo r  a quadra t i c  law govern ing  the 
va r i a t i on  of the t e m p e r a t u r e  head as a funct ion of the d isk  rad ius  will  be equal  (Pr  = 1) to 

~ l  r ~ r  2 
Nu~ = 0,0225 Re~'STo (x), Nu z = ~ ,  Rel = - -  

'V 

(9) 

(lO) 

The spec i f i c  dependence (10) enables  us to de t e rmine  the number s  N u / a n d  Nu for  an  a r b i t r a r y  t e m p e r a t u r e  
head  | if we make  the a s sumpt ion ,  as  we did in der iv ing  Eq. (1), that  the va r i a t i on  of heat  t r a n s f e r  with 
r e s p e c t  to the rad ia l  t e m p e r a t u r e  grad ien t  obeys  a conse rva t i ve  law. Omit t ing  the ca lcu la t ions ,  which a r e  
given in detai l  fo r  the case  of a disk in [13-14], we give the f inal  equat ions  be low:  

Nu z = 0.0215 Re~ '8 Pr ~ 

Nu = 0.0269 Re ~ Pr ~ 

oo.25TojO.2~ 

LI  

x~ .i Oxdx 
1 

J| ---- i x3" 6 To (x) dx. 
1 

(11) 

( 1 2 )  

F r o m  this it fol lows that fo r  | = cons t  we have 

Nul ----- 0.0215 Re~'SPr ~ H Z (x), 

Nu --- 0.0269 Re ~ Pr ~ //(x), 

To d~ 
n l (x)= 

x ~ roJ~ '~Sx 1'' dx 
t.1 

/7 (x) = x ~ (x ~ - -  1) 

(13) 

(14) 

The funct ions  L = ToJ~ "2S, IIl(x), and II(x) w e r e  ca lcu la ted  on e l ec t ron ic  c o m p u t e r s  (Fig. 1). 

In the case  under  cons ide ra t ion ,  the d e s i r e d  in tegra l ,  ca lcu la ted  fo r  the h e a t - t r a n s f e r  s u r f a c e  u p s t r e a m  
f r o m  the a - c a l o r i m e t e r ,  wil l  be 

Jx~ [[ 0.0215 Re~'Spr ~ O~176176 *" O"eSV~176 o' 2 5 T j ~ 1 7 6  dx = - -  x "  (15) 

1 

By subst i tu t ing this in tegra l  into Eq.  (12), we can d e t e r m i n e  the ave r age  value of the h e a t - t r a n s f e r  coeff ic ient  
on the annular  su r f a c e  1 -< x -< x 1. 

The tes t s  w e r e  conducted  for  seven  va lues  of the Reynolds  number  Re/ ,  r ang ing  f r o m  2.6 �9 105 to 1.2 
�9 10 ~. The excess  t e m p e r a t u r e  of the o u t e r m o s t  p a i r  of heat ing r ings  was  kept  at 40~ on the r e s t  of the web 
of the disk,  f r o m  the hub rad ius  r 0 = 100 m m  to r I = 261 ram, the excess  t e m p e r a t u r e  was  20~ The a v e r a g e  
h e a t - t r a n s f e r  coeff ic ient  on this p a r t  of the d isk  was  d e t e r m i n e d  by ca lcu la t ions  made on the bas i s  of the 
loca l  coeff ic ient  m e a s u r e d  by  the a - c a l o r i m e t e r ,  and also,  fo r  c o m p a r i s o n  p u r p o s e s ,  d i r e c t l y  on the b a s i s  of 
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the e lec t r ica l  power of the heating r ings.  As our a - c a l o r i m e t e r ,  we used the heating rings bounded by the 
261 mm and 279 mm radi i .  The outermost  heating rings served  as a thermal  b a r r i e r  for  the a - c a l o r i m e t e r .  

In determining the local and average hea t - t r ans fe r  coeff icients ,  we took into account the heat flow 
through the body of the disk between heating rings having different  t empera tu res .  The heat flux in the disk 
was found by simulat ion of the t empera tu re  field on the I~GDA 9/60 e lectronic  analog computer .  

Curve i of Fig.  2, which approximates  the exper imenta l  values of the local Nusselt  numbers  NUl, is 
descr ibed  by the equation 

Re L" . (16) Nu z = 0,023 o a 

in which the local Nusselt  numbers  Nul are  2% higher  than the calculated values obtained f rom formula  (11) 
for  a s tepwise distr ibution of t empera tu re  over  the sur face .  

Curve 3 is the "mapping" of curve  1 in the sense indicated above, using Eqs.  (15) and (12)o For  com-  
pa r i son  purposes ,  we have also plotted on Fig. 2 another curve  (curve 2) based on Eq~ (12). The solid black 
c i rc les  r ep re sen t  the exper imenta l  values of the average  Nusselt  numbers .  Since the determinat ion of the 
average  he a t - t r an s f e r  coefficient on the surface  ups t ream f rom the a - c a l o r i m e t e r  f rom the local values of 
the hea t - t r ans f e r  coefficient  is such a complex problem,  the agreement  between the calculated and d i rec t ly  
measured  values of the hea t - t r ans f e r  coefficient should be considered sa t i s fac tory .  

Uo~) 
| 

Nu 
Re 
P r  

XO, X 1 

r 0 

r 

x = r / r  o 

4~,y, TO, Jo, r 

S u b s c r i p t s  

N O T A T I O N  

is the flow veloci ty  of the boundary l aye r  at position x (along the surface);  
~s the excess  t empera tu re  of the hea t - t r ans fe r  surface;  
is the kinematic  viscosi ty;  
~s the Nusselt  number;  
is the Reynolds number;  
is the Prandt l  number;  
m the thermal  conductivity; 
ts the hea t - t r an s f e r  coefficient;  
a re  the absc issae  of the beginning and the end of the heated element  of the a - c a l o r i m e t e r ,  
respect ively;  
is the radius at which the flow past the disk begins; 
is the local  radius of the disk; 
is the dimensionless  value of the local disk radius;  
is the thickness of the hydrodynamic boundary layer ;  
is the angular veloci ty  of disk rotation; 
a re  the auxi l iary  functions; 
is the effect ive thermal  boundary l aye r .  

denotes local values .  
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